

### LME49860

# 44V Dual High Performance, High Fidelity Audio Operational Amplifier

### **General Description**

The LME49860 is part of the ultra-low distortion, low noise, high slew rate operational amplifier series optimized and fully specified for high performance, high fidelity applications. Combining advanced leading-edge process technology with state-of-the-art circuit design, the LME49860 audio operational amplifiers deliver superior audio signal amplification for outstanding audio performance. The LME49860 combines extremely low voltage noise density (2.7nV/ $\sqrt{\text{Hz}}$ ) with vanishingly low THD+N (0.00003%) to easily satisfy the most demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LME49860 has a high slew rate of  $\pm 20\text{V}/\mu\text{s}$  and an output current capability of  $\pm 26\text{mA}$ . Further, dynamic range is maximized by an output stage that drives  $2k\Omega$  loads to within 1V of either power supply voltage and to within 1.4V when driving 600 $\Omega$  loads.

The LME49860's outstanding CMRR (120dB), PSRR (120dB), and  $\rm V_{OS}$  (0.1mV) give the amplifier excellent operational amplifier DC performance.

The LME49860 has a wide supply range of ±2.5V to ±22V. Over this supply range the LME49860 maintains excellent common-mode rejection, power supply rejection, and low input bias current. The LME49860 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads with values as high as 100pF.

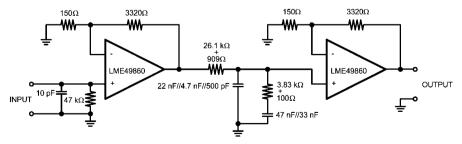
The LME49860 is available in 8-lead narrow body SOIC and 8-lead Plastic DIP packages. Demonstration boards are available for each package.

### **Key Specifications**

■ Power Supply Voltage Range ±2.5V to ±22V

THD+N  $(A_V = 1, V_{OUT} = 3V_{RMS}, f_{IN} = 1kHz)$ 

| $R_L = 2k\Omega$                         | 0.00003% (typ)                         |
|------------------------------------------|----------------------------------------|
| $R_L = 600\Omega$                        | 0.00003% (typ)                         |
| ■ Input Noise Density                    | $2.7 \text{nV}/\sqrt{\text{Hz}}$ (typ) |
| ■ Slew Rate                              | ±20V/µs (typ)                          |
| ■ Gain Bandwidth Product                 | 55MHz (typ)                            |
| ■ Open Loop Gain (R <sub>L</sub> = 600Ω) | 140dB (typ)                            |
| ■ Input Bias Current                     | 10nA (typ)                             |
| ■ Input Offset Voltage                   | 0.1mV (typ)                            |
| ■ DC Gain Linearity Error                | 0.000009%                              |


#### **Features**

- Easily drives 600Ω loads
- Optimized for superior audio signal fidelity
- Output short circuit protection
- PSRR and CMRR exceed 120dB (typ)
- SOIC, DIP packages

### **Applications**

- Ultra high quality audio amplification
- High fidelity preamplifiers
- High fidelity multimedia
- State of the art phono pre amps
- High performance professional audio
- High fidelity equalization and crossover networks
- High performance line drivers
- High performance line receivers
- High fidelity active filters

### **Typical Application**




Note: 1% metal film resistors, 5% polypropylene capacitors

**Passively Equalized RIAA Phono Preamplifier** 

202151k5

#### **Connection Diagrams**



Order Number LME49860MA See NS Package Number — M08A Order Number LME49860NA See NS Package Number — N08E

20215101

LME49860MA Top Mark

NZXTT L49860 MA

N — National Logo

Z — Assembly Plant code

X — 1 Digit Date code

TT — Die Traceability

L49860 — LME49860

MA — Package code

LME49860NA Top Mark

NUZXYTT LME 49860NA

20215102

N — National Logo
U — Fabrication code
Z — Assembly Plant code
XY — 2 Digit Date code
TT — Die Traceability
NA — Package code

102°C/W

### **Absolute Maximum Ratings** (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage

 $(V_S = V^+ - V^-)$  46V Storage Temperature  $-65^{\circ}$ C to  $150^{\circ}$ C Input Voltage  $(V^-) - 0.7V$  to  $(V^+) + 0.7V$ 

Output Short Circuit (Note 3) Continuous ESD Susceptibility (Note 4) 2000V

ESD Susceptibility (Note 5)

Pins 1, 4, 7 and 8 200V

Pins 2, 3, 5 and 6 100V Junction Temperature 150°C Thermal Resistance  $\theta_{JA}$  (SO) 145°C/W

#### **Operating Ratings**

Temperature Range

 $\theta_{JA}$  (NA)

 $\begin{aligned} & \mathsf{T_{MIN}} \le \mathsf{T_{A}} \le \mathsf{T_{MAX}} & -40^{\circ}\mathsf{C} \le \mathsf{T_{A}} \le 85^{\circ}\mathsf{C} \\ & \mathsf{Supply Voltage Range} & \pm 2.5\mathsf{V} \le \mathsf{V_{S}} \le \pm 22\mathsf{V} \end{aligned}$ 

**Electrical Characteristics for the LME49860** (Note 1) The following specifications apply for  $V_S = \pm 18V$  and  $\pm 22V$ ,  $R_L = 2k\Omega$ ,  $R_{SOURCE} = 10\Omega$ ,  $f_{IN} = 1kHz$ ,  $T_A = 25^{\circ}C$ , unless otherwise specified.

| Symbol                  | Parameter                                                     | Conditions                                                                                   | LME49860       |                          | Units                      |
|-------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|--------------------------|----------------------------|
|                         |                                                               |                                                                                              | Typical Limit  |                          |                            |
|                         |                                                               |                                                                                              | (Note 6)       | (Note 7)                 | (Limits)                   |
|                         |                                                               | $A_V = 1$ , $V_{OUT} = 3V_{rms}$                                                             |                |                          |                            |
| THD+N                   | Total Harmonic Distortion + Noise                             | $R_1 = 2k\Omega$                                                                             | 0.00003        |                          | % (max)                    |
|                         |                                                               | $R_L = 600\Omega$                                                                            | 0.00003        | 0.00009                  |                            |
| IMD                     | Intermodulation Distortion                                    | $A_V = 1$ , $V_{OUT} = 3V_{RMS}$<br>Two-tone, 60Hz & 7kHz 4:1                                | 0.00005        |                          | %                          |
| GBWP                    | Gain Bandwidth Product                                        |                                                                                              | 55             | 45                       | MHz (min)                  |
| SR                      | Slew Rate                                                     |                                                                                              | ±20            | ±15                      | V/µs (min)                 |
| FPBW                    | Full Power Bandwidth                                          | V <sub>OUT</sub> = 1V <sub>P-P</sub> , -3dB<br>referenced to output magnitude<br>at f = 1kHz | 10             |                          | MHz                        |
| t <sub>s</sub>          | Settling time                                                 | $A_V = -1$ , 10V step, $C_L = 100pF$<br>0.1% error range                                     | 1.2            |                          | μs                         |
|                         | Equivalent Input Noise Voltage                                | f <sub>BW</sub> = 20Hz to 20kHz                                                              | 0.34           | 0.65                     | μV <sub>RMS</sub><br>(max) |
| e <sub>n</sub>          |                                                               | f = 1kHz                                                                                     | 2.7            | 4.7                      | nV/√ <del>Hz</del>         |
|                         | Equivalent Input Noise Density                                | f = 10Hz                                                                                     | 6.4            |                          | (max)                      |
| i <sub>n</sub>          | Current Noise Density                                         | f = 1kHz                                                                                     | 1.6            |                          | A / /I I=                  |
| 11                      |                                                               | f = 10Hz                                                                                     | 3.1            |                          | pAJ√Hz                     |
|                         | 0" 11"                                                        | V <sub>S</sub> = ±18V                                                                        | ±0.12          | ±0.7                     | mV (max)                   |
| V <sub>OS</sub>         | Offset Voltage                                                | $V_S = \pm 22V$                                                                              | ±0.14          | ±0.7                     | mV (max)                   |
| ΔV <sub>OS</sub> /ΔTemp | Average Input Offset Voltage Drift vs<br>Temperature          | –40°C ≤ T <sub>A</sub> ≤ 85°C                                                                | 0.2            |                          | μV/°C                      |
| PSRR                    | Average Input Offset Voltage Shift vs<br>Power Supply Voltage | (Note 8)<br>$V_S = \pm 18V$ , $\Delta V_S = 24V$<br>$V_S = \pm 22V$ , $\Delta V_S = 30V$     | 120<br>120     | 110                      | dB<br>dB (min)             |
| ISO <sub>CH-CH</sub>    | Channel-to-Channel Isolation                                  | $\begin{split} f_{IN} &= 1 \text{kHz} \\ f_{IN} &= 20 \text{kHz} \end{split}$                | 118<br>112     |                          | dB                         |
| I <sub>B</sub>          | Input Bias Current                                            | $V_{CM} = 0V$                                                                                | 10             | 72                       | nA (max)                   |
| ΔI <sub>OS</sub> /ΔTemp | Input Bias Current Drift vs<br>Temperature                    | -40°C ≤ T <sub>A</sub> ≤ 85°C                                                                | 0.1            |                          | nA/°C                      |
| I <sub>os</sub>         | Input Offset Current                                          | $V_{CM} = 0V$                                                                                | 11             | 65                       | nA (max)                   |
|                         | Common-Mode Input Voltage Range                               | V <sub>S</sub> = ±18V                                                                        | +17.1<br>-16.9 | (V+) - 2.0<br>(V-) + 2.0 | V (min)<br>V (min)         |
| V <sub>IN-CM</sub>      |                                                               | V <sub>S</sub> = ±22V                                                                        | +21.0<br>-20.8 | (V+) - 2.0<br>(V-) + 2.0 | V (min)<br>V (min)         |

3

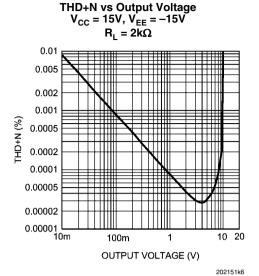
| Symbol              | Parameter                           | Conditions                                                        | LME4           | LME49860 |               |
|---------------------|-------------------------------------|-------------------------------------------------------------------|----------------|----------|---------------|
|                     |                                     |                                                                   | Typical        | Limit    | Units         |
|                     |                                     |                                                                   | (Note 6)       | (Note 7) | (Limits)      |
|                     |                                     | V <sub>S</sub> = ±18V                                             | 120            |          | dB            |
| CMRR                | Common-Mode Rejection               | -12V ≤ V <sub>CM</sub> ≤ 12V                                      |                |          |               |
|                     | Common-wode rejection               | $V_S = \pm 22V$                                                   | 120            | 110      | dB (min       |
|                     |                                     | -15V ≤ V <sub>CM</sub> ≤ 15V                                      | 120            | 110      | dB (IIIII)    |
| 7                   | Differential Input Impedance        |                                                                   | 30             |          | kΩ            |
| Z <sub>IN</sub>     | Common Mode Input Impedance         | -10V <vcm<10v< td=""><td>1000</td><td></td><td>MΩ</td></vcm<10v<> | 1000           |          | MΩ            |
|                     |                                     | V <sub>S</sub> = ±18V                                             |                |          |               |
|                     |                                     | –12V≤Vout≤12V                                                     |                |          |               |
|                     |                                     | $R_L = 600\Omega$                                                 | 140            |          | dB            |
|                     |                                     | $R_L = 2k\Omega$                                                  | 140            |          | dB            |
|                     |                                     | $R_L = 10k\Omega$                                                 | 140            |          | dB            |
| A <sub>VOL</sub>    | Open Loop Voltage Gain              | $V_S = \pm 22V$                                                   |                |          |               |
|                     |                                     | _15V≤Vout≤15V                                                     |                |          |               |
|                     |                                     | $R_1 = 600\Omega$                                                 |                | 125      | <sub></sub> . |
|                     |                                     | $R_1 = 2k\Omega$                                                  | 140            |          | dB (mir       |
|                     |                                     | $R_L = 10k\Omega$                                                 | 140<br>140     |          | dB<br>dB      |
|                     |                                     | $R_1 = 600\Omega$                                                 | 140            |          | 1 45          |
|                     |                                     | $V_{S} = \pm 18V$                                                 | 40.7           |          | ,,            |
|                     |                                     | $V_S = \pm 16V$ $V_S = \pm 22V$                                   | ±16.7<br>±20.4 | .10.0    | V (min)       |
|                     |                                     |                                                                   | ±20.4          | ±19.0    | V (min)       |
| \                   | Maximum Output Voltage Swing        | $R_L = 2k\Omega$                                                  |                |          |               |
| $V_{OUTMAX}$        |                                     | $V_S = \pm 18V$                                                   | ±17.0          |          | l V           |
|                     |                                     | V <sub>S</sub> = ±22V                                             | ±21.0          |          | V             |
|                     |                                     | $R_L = 10k\Omega$                                                 |                |          |               |
|                     |                                     | $V_S = \pm 18V$                                                   | ±17.1          |          | V             |
|                     |                                     | V <sub>S</sub> = ±22V                                             | ±21.2          |          | V             |
| I <sub>OUT</sub>    | Output Current                      | $R_L = 600\Omega$                                                 |                |          |               |
|                     |                                     | $V_S = \pm 20V$                                                   | ±31            |          | mA            |
|                     |                                     | V <sub>S</sub> = ±22V                                             | ±37            | ±30      | mA (mir       |
| I <sub>OUT-CC</sub> | Instantaneous Short Circuit Current |                                                                   | +53            |          | mA            |
| ·001-CC             | mount of one of other               |                                                                   | -42            |          | 111/2         |
| R <sub>OUT</sub>    |                                     | $f_{IN} = 10kHz$                                                  |                |          |               |
|                     | Output Impedance                    | Closed-Loop                                                       | 0.01           |          | Ω             |
|                     |                                     | Open-Loop                                                         | 13             |          |               |
| C <sub>LOAD</sub>   | Capacitive Load Drive Overshoot     | 100pF                                                             | 16             |          | %             |
|                     |                                     | I <sub>OUT</sub> = 0mA                                            |                |          |               |
| I <sub>S</sub>      | Total Quiescent Current             | $V_S = \pm 18V$                                                   | 10.2           |          | mA            |
|                     |                                     | $V_S = \pm 22V$                                                   | 10.5           | 13       | mA (max       |

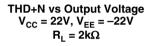
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.

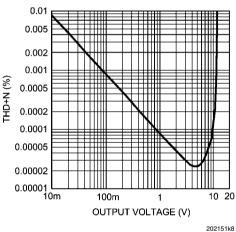
**Note 2:** Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: Amplifier output connected to GND, any number of amplifiers within a package.

Note 4: Human body model, 100pF discharged through a 1.5k $\Omega$  resistor.

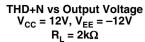

Note 5: Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into the IC with no external series resistor (resistance of discharge path must be under  $50\Omega$ ).

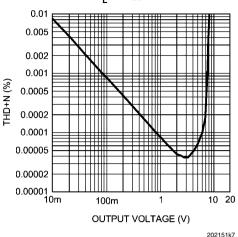

Note 6: Typical specifications are specified at  $+25^{\circ}\text{C}$  and represent the most likely parametric norm.


Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

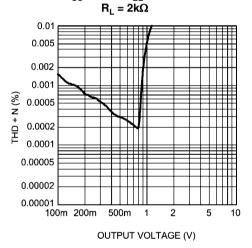
Note 8: PSRR is measured as follows: For  $V_S$  = ±22V,  $V_{OS}$  is measured at two supply voltages, ±7V and ±22V. PSRR = |  $20\log(\Delta V_{OS}/\Delta V_S)$  |.

### **Typical Performance Characteristics**

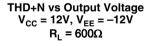


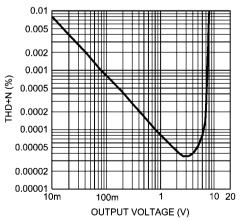





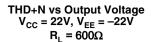


THD+N vs Output Voltage  $V_{CC} = 15V, \, V_{EE} = -15V \\ R_L = 600\Omega$ 

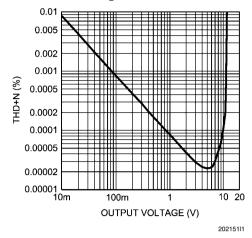




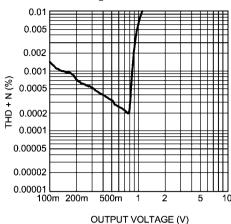




THD+N vs Output Voltage  $V_{CC} = 2.5V$ ,  $V_{EE} = -2.5V$ 



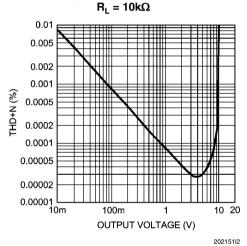


202151i4



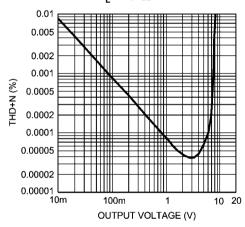



20215110



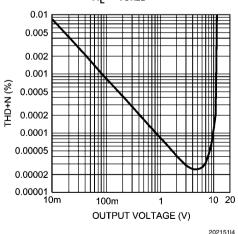



THD+N vs Output Voltage  $V_{CC}$  = 2.5V,  $V_{EE}$  = -2.5V  $R_L$  =  $600\Omega$ 

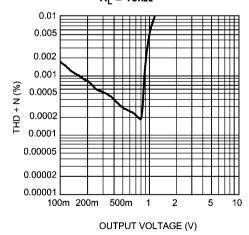



202151i6

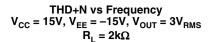
THD+N vs Output Voltage  $V_{CC} = 15V$ ,  $V_{EE} = -15V$ 

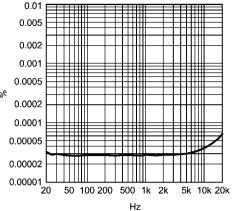


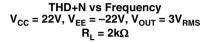

THD+N vs Output Voltage  $V_{CC} = 12V, \, V_{EE} = -12V$   $R_L = 10k\Omega$ 

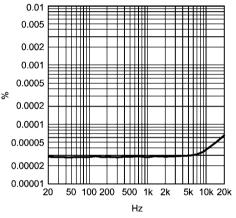



20215113

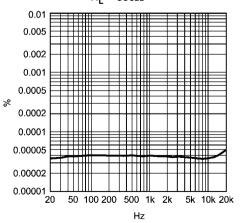

THD+N vs Output Voltage  $V_{CC}$  = 22V,  $V_{EE}$  = -22V  $R_{L}$  = 10k $\Omega$ 





THD+N vs Output Voltage  $V_{CC}$  = 2.5V,  $V_{EE}$  = -2.5V  $R_{I}$  = 10k $\Omega$ 

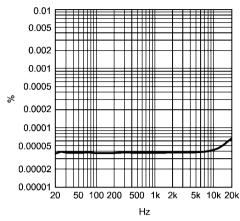



202151i5

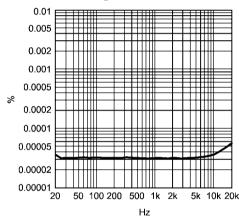




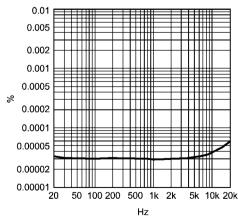


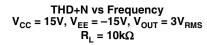



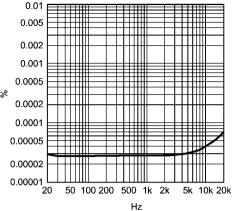

THD+N vs Frequency 
$$\begin{aligned} V_{CC} &= 12V, \, V_{EE} = -12V, \, V_{OUT} = 3V_{RMS} \\ R_L &= 600\Omega \end{aligned}$$



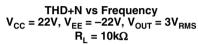

202151k3

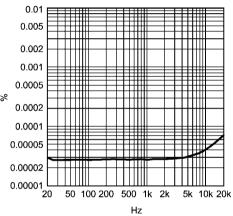

THD+N vs Frequency 
$$\begin{aligned} V_{CC} &= 12V, \, V_{EE} = -12V, \, V_{OUT} = 3V_{RMS} \\ R_L &= 2k\Omega \end{aligned}$$





THD+N vs Frequency 
$$\begin{aligned} V_{CC} = 15V, \, V_{EE} = -15V, \, V_{OUT} = 3V_{RMS} \\ R_L = 600\Omega \end{aligned}$$

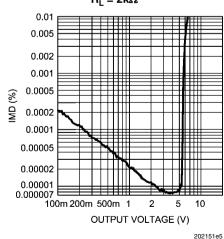



THD+N vs Frequency 
$$\begin{aligned} V_{CC} = 22V, \, V_{EE} = -22V, \, V_{OUT} = 3V_{RMS} \\ R_L = 600\Omega \end{aligned}$$

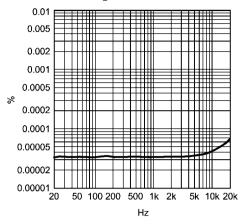






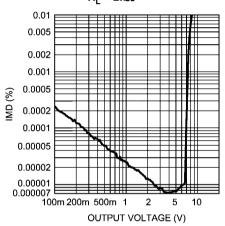


20215167





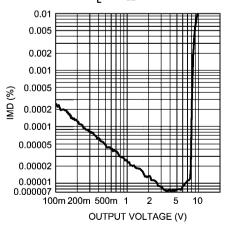

20215168

IMD vs Output Voltage  $V_{CC} = 12V, V_{EE} = -12V$  $R_L = 2k\Omega$ 

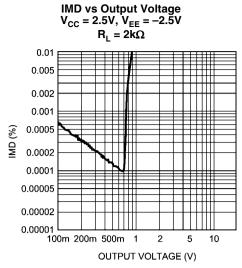



THD+N vs Frequency  $V_{CC}$  = 12V,  $V_{EE}$  = -12V,  $V_{OUT}$  =  $3V_{RMS}$  $R_L = 10k\Omega$ 

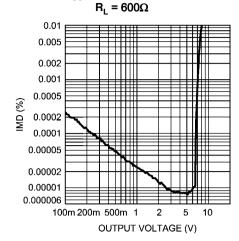



20215166

IMD vs Output Voltage  $V_{CC} = 15V$ ,  $V_{EE} = -15V$  $R_L = 2k\Omega$ 

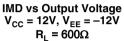



202151e6


IMD vs Output Voltage  $V_{CC} = 22V, V_{EE} = -22V$  $R_L = 2k\Omega$ 



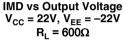
202151e7

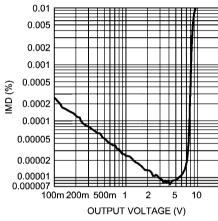




202151e4

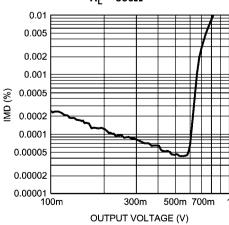



IMD vs Output Voltage  $V_{CC} = 15V$ ,  $V_{EE} = -15V$ 


202151e2

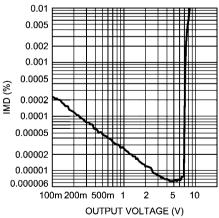




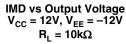

202151e0







202151e3

# IMD vs Output Voltage $V_{CC}$ = 2.5V, $V_{EE}$ = -2.5V $R_L$ = 600 $\Omega$




202151e1





202151f1



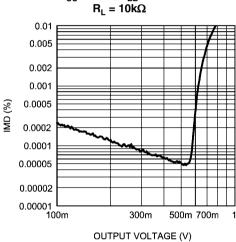


0.002 0.001 0.0005 0.0002 0.0001 0.00005 0.00002

IMD vs Output Voltage V<sub>CC</sub> = 22V, V<sub>EE</sub> = -22V

 $R_L = 10k\Omega$ 

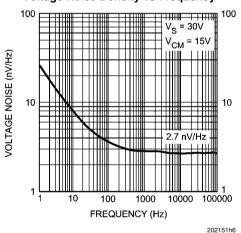
0.01


0.005

0.00001

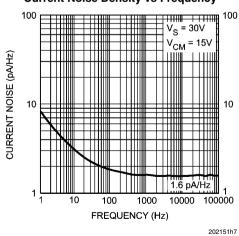
0.000006

202151f2

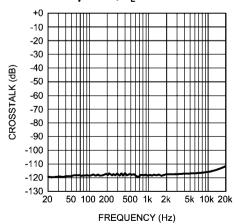

## IMD vs Output Voltage $V_{CC} = 2.5V$ , $V_{EE} = -2.5V$



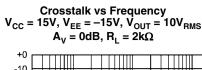
Voltage Noise Density vs Frequency

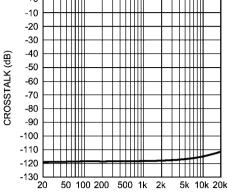

OUTPUT VOLTAGE (V)

100m 200m 500m 1

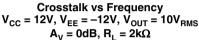



**Current Noise Density vs Frequency** 

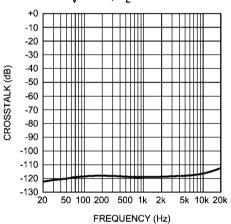

20215116



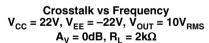

Crosstalk vs Frequency  $V_{CC}$  = 15V,  $V_{EE}$  = -15V,  $V_{OUT}$  =  $3V_{RMS}$   $A_V$  = 0dB,  $R_L$  =  $2k\Omega$ 

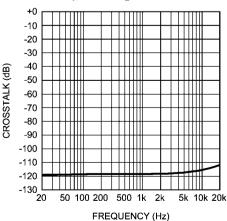



202151c8



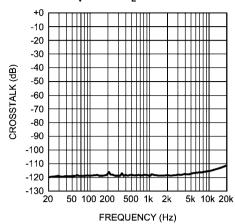




202151c9



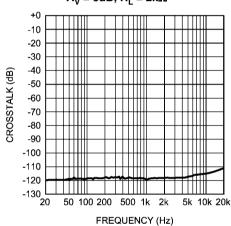

FREQUENCY (Hz)




202151c7

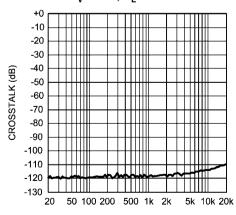





202151d1

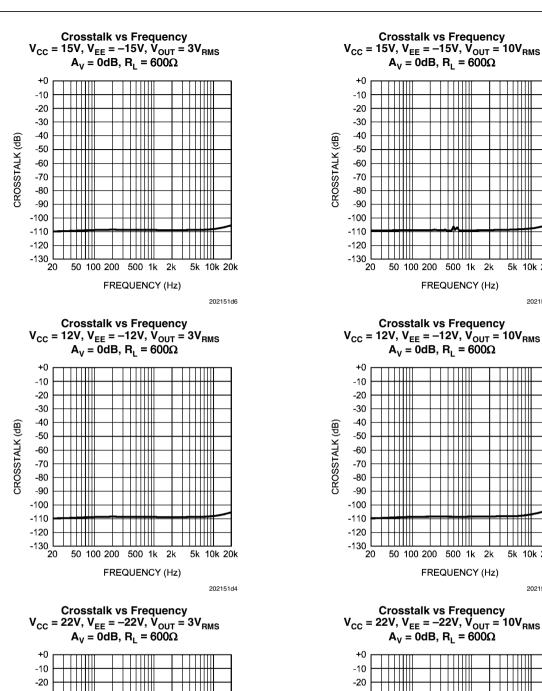
 $\begin{array}{c} \text{Crosstalk vs Frequency} \\ \text{V}_{\text{CC}} = 12\text{V}, \text{V}_{\text{EE}} = -12\text{V}, \text{V}_{\text{OUT}} = 3\text{V}_{\text{RMS}} \\ \text{A}_{\text{V}} = 0\text{dB}, \text{R}_{\text{I}} = 2\text{k}\Omega \end{array}$ 




202151c6

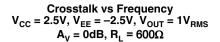
## $\begin{aligned} & \text{Crosstalk vs Frequency} \\ V_{\text{CC}} &= 22\text{V}, V_{\text{EE}} = -22\text{V}, V_{\text{OUT}} = 3\text{V}_{\text{RMS}} \\ A_{\text{V}} &= 0\text{dB}, \, R_{\text{L}} = 2\text{k}\Omega \end{aligned}$

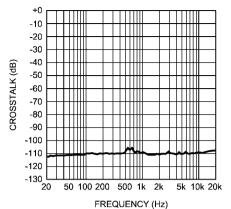



202151d0


Crosstalk vs Frequency 
$$V_{CC}$$
 = 2.5V,  $V_{EE}$  = -2.5V,  $V_{OUT}$  = 1 $V_{RMS}$   $A_V$  = 0dB,  $R_I$  = 2k $\Omega$ 

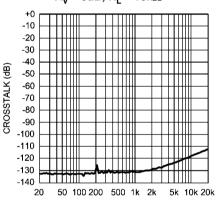



FREQUENCY (Hz)


202151n8



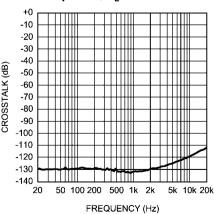



 $A_V = 0$ dB,  $R_L = 600\Omega$ 



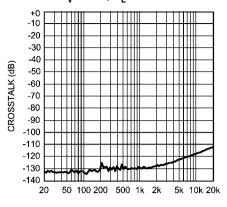


202151d2


# $\begin{aligned} & \text{Crosstalk vs Frequency} \\ \textbf{V}_{\text{CC}} &= 15 \text{V}, \, \textbf{V}_{\text{EE}} = -15 \text{V}, \, \textbf{V}_{\text{OUT}} = 10 \text{V}_{\text{RMS}} \\ & \textbf{A}_{\text{V}} = 0 \text{dB}, \, \textbf{R}_{\text{L}} = 10 \text{k}\Omega \end{aligned}$

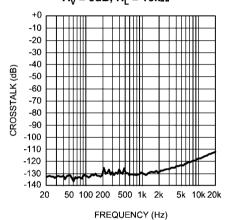


FREQUENCY (Hz)


202151n7

# $\begin{array}{c} \text{Crosstalk vs Frequency} \\ \text{V}_{\text{CC}} = 12\text{V}, \, \text{V}_{\text{EE}} = -12\text{V}, \, \text{V}_{\text{OUT}} = 10\text{V}_{\text{RMS}} \\ \text{A}_{\text{V}} = 0\text{dB}, \, \text{R}_{\text{L}} = 10\text{k}\Omega \end{array}$

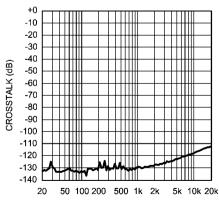



202151n6

 $\begin{array}{c} \text{Crosstalk vs Frequency} \\ V_{\text{CC}} = 15 \text{V, } V_{\text{EE}} = -15 \text{V, } V_{\text{OUT}} = 3 V_{\text{RMS}} \\ A_{\text{V}} = 0 \text{dB, } R_{\text{I}} = 10 \text{k}\Omega \end{array}$ 

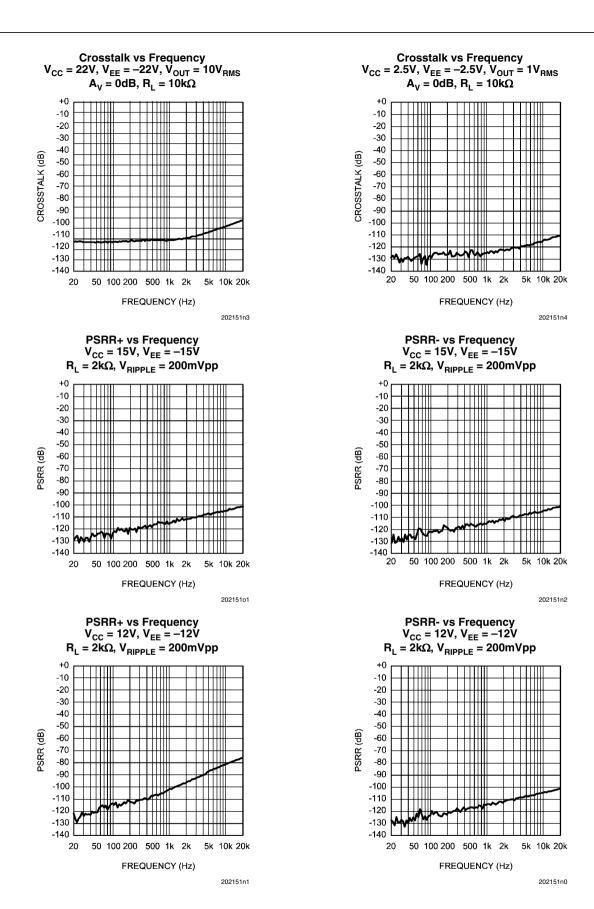


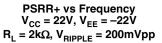
FREQUENCY (Hz) 20215100

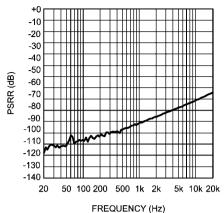

 $\begin{aligned} & \text{Crosstalk vs Frequency} \\ V_{\text{CC}} &= 12V, \, V_{\text{EE}} = -12V, \, V_{\text{OUT}} = 3V_{\text{RMS}} \\ A_{_{V}} &= 0dB, \, R_{_{I}} = 10k\Omega \end{aligned}$ 



----

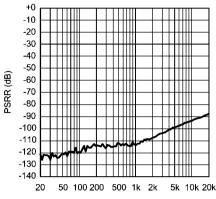

202151n9


# $\begin{aligned} & \text{Crosstalk vs Frequency} \\ & \text{V}_{\text{CC}} = 22\text{V}, \, \text{V}_{\text{EE}} = -22\text{V}, \, \text{V}_{\text{OUT}} = 3\text{V}_{\text{RMS}} \\ & \text{A}_{\text{V}} = 0\text{dB}, \, \text{R}_{\text{L}} = 10\text{k}\Omega \end{aligned}$



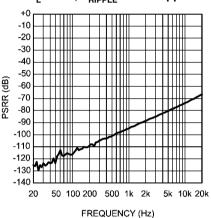

FREQUENCY (Hz)

202151n5





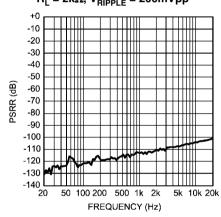




202151m9

# $\begin{aligned} & \text{PSRR- vs Frequency} \\ & \text{V}_{\text{CC}} = 22\text{V}, \, \text{V}_{\text{EE}} = -22\text{V} \\ & \text{R}_{\text{L}} = 2\text{k}\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{aligned}$

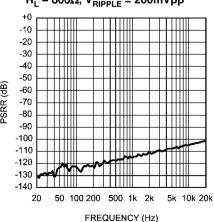


20215103


# $\begin{aligned} & \text{PSRR+ vs Frequency} \\ & \text{V}_{\text{CC}} = 2.5\text{V}, \, \text{V}_{\text{EE}} = -2.5\text{V} \\ & \text{R}_{\text{L}} = 2\text{k}\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{aligned}$

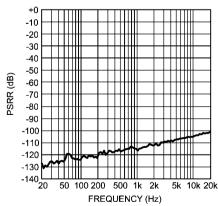


202151m8

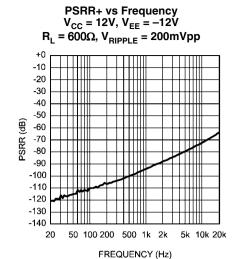

# PSRR- vs Frequency $V_{CC}$ = 2.5V, $V_{EE}$ = -2.5V $R_L$ = 2k $\Omega$ , $V_{RIPPLE}$ = 200mVpp

FREQUENCY (Hz)

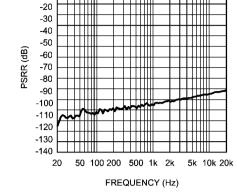



20215106

# $$\begin{split} & \text{PSRR+ vs Frequency} \\ & \text{V}_{\text{CC}} = 15\text{V}, \, \text{V}_{\text{EE}} = -15\text{V} \\ & \text{R}_{\text{L}} = 600\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{split}$$




20215102

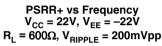

# $\begin{aligned} & \text{PSRR- vs Frequency} \\ & \text{V}_{\text{CC}} = 15\text{V}, \, \text{V}_{\text{EE}} = -15\text{V} \\ & \text{R}_{\text{L}} = 600\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{aligned}$

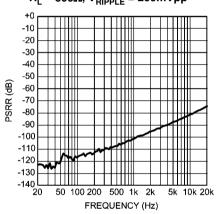


20215107

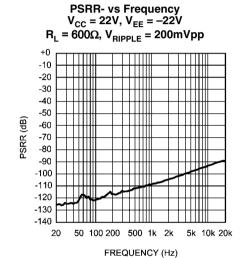


202151m7

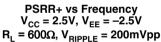


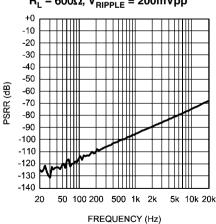


 $\begin{array}{c} \text{PSRR- vs Frequency} \\ \text{V}_{\text{CC}} = 12\text{V}, \, \text{V}_{\text{EE}} = -12\text{V} \\ \text{R}_{\text{L}} = 600\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{array}$ 

+0

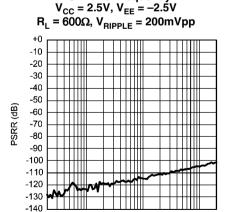

-10

20215104




20215105



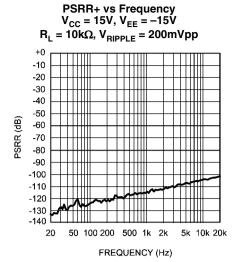

202151m6



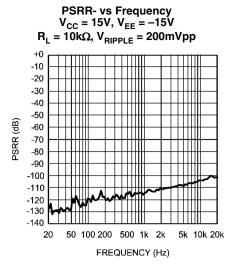


202151m5

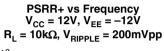


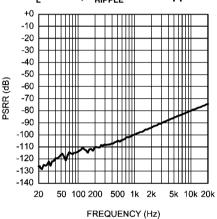

50 100 200 500 1k 2k

**PSRR- vs Frequency** 

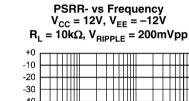

FREQUENCY (Hz)

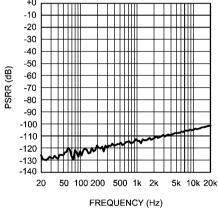
202151m4


5k 10k 20k



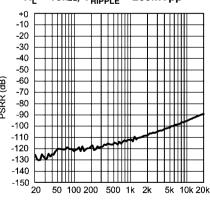

202151m3





202151m2



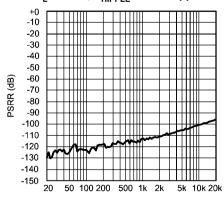



202151m1



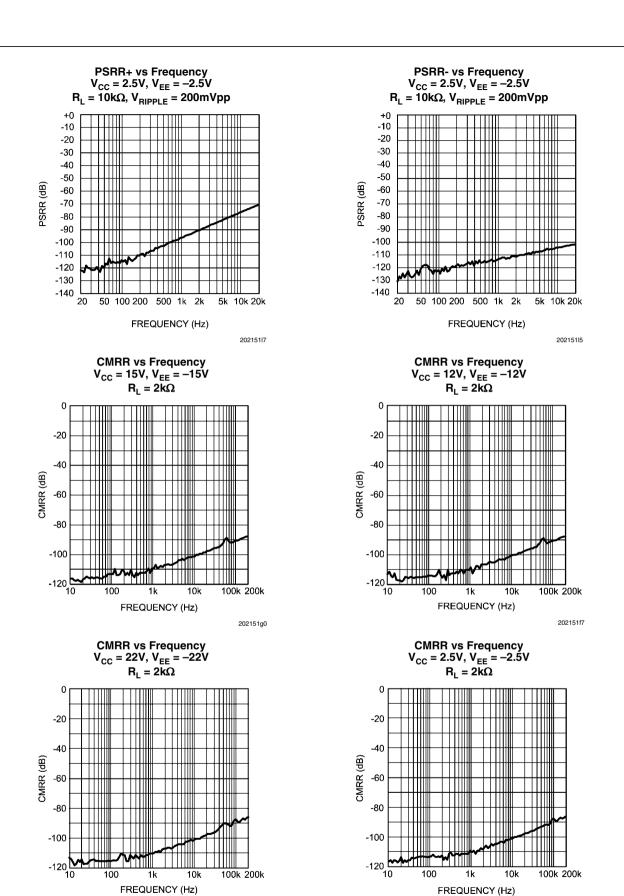


202151m0


**PSRR+ vs Frequency**  $V_{CC} = 22V, V_{EE} = -22V$  $R_L = 10k\Omega$ ,  $V_{RIPPLE} = 200mVpp$ 



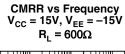
FREQUENCY (Hz)

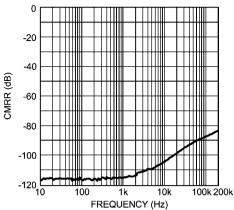

20215119

**PSRR- vs Frequency**  $V_{CC} = 22V, V_{EE} = -22V$  $R_L = 10k\Omega$ ,  $V_{RIPPLE} = 200mVpp$ 



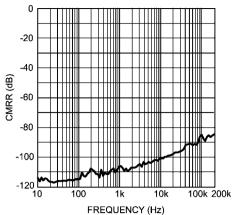
FREQUENCY (Hz)


20215118



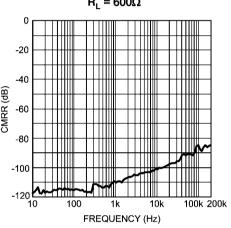

www.national.com 18

202151g3

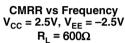

202151f4

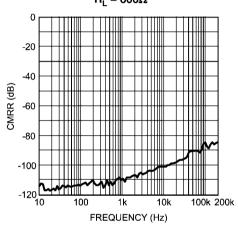





20215109

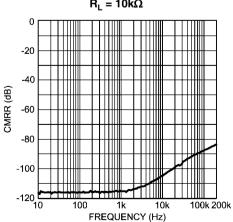
CMRR vs Frequency  $V_{CC}$  = 12V,  $V_{EE}$  = -12V  $R_L$  = 600 $\Omega$ 





202151f9

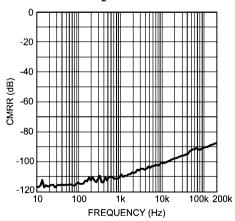
# CMRR vs Frequency $V_{CC}$ = 22V, $V_{EE}$ = -22V $R_L$ = 600 $\Omega$



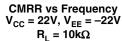

202151g5

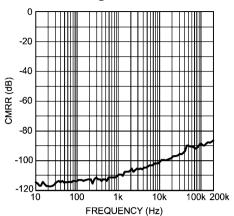





202151f6

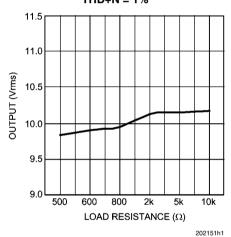
# CMRR vs Frequency $V_{CC}$ = 15V, $V_{EE}$ = -15V $R_L$ = 10k $\Omega$



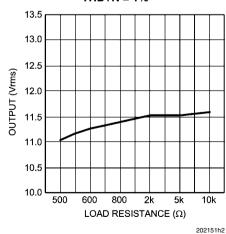


20215108

CMRR vs Frequency 
$$V_{CC}$$
 = 12V,  $V_{EE}$  = -12V  $R_L$  = 10k $\Omega$ 

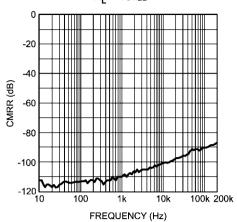



202151f8



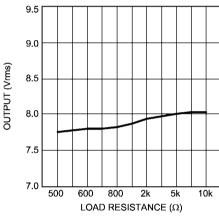



202151g4


# Output Voltage vs Load Resistance $V_{CC}$ = 15V, $V_{EE}$ = -15V THD+N = 1%

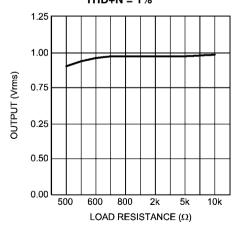


Output Voltage vs Load Resistance  $V_{CC}$  = 22V,  $V_{EE}$  = -22V THD+N = 1%



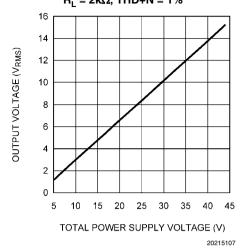

CMRR vs Frequency  $V_{CC}$  = 2.5V,  $V_{EE}$  = -2.5V  $R_L$  = 10k $\Omega$ 



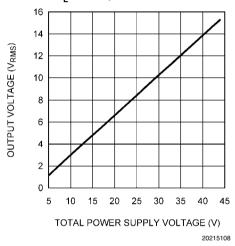

202151f5

## Output Voltage vs Load Resistance $V_{CC}$ = 12V, $V_{EE}$ = -12V THD+N = 1%

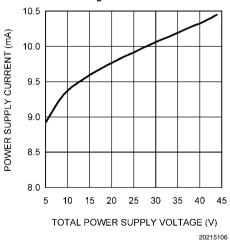



202151h0

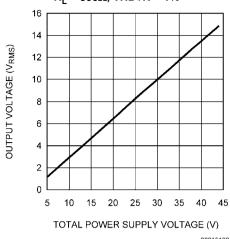
# Output Voltage vs Load Resistance $V_{CC}$ = 2.5V, $V_{EE}$ = -2.5V THD+N = 1%



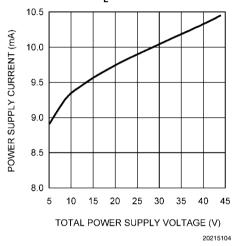

202151g9


## Output Voltage vs Total Power Supply Voltage $R_1 = 2k\Omega$ , THD+N = 1%

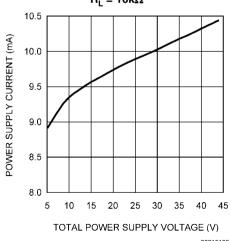



### Output Voltage vs Total Power Supply Voltage $R_1 = 10k\Omega$ , THD+N = 1%

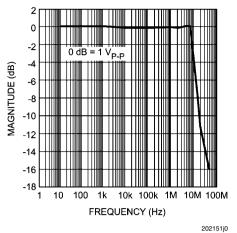



## Power Supply Current vs Total Power Supply Voltage $R_L = 600\Omega$

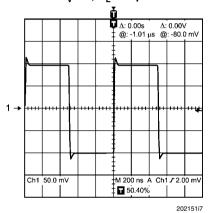



## Output Voltage vs Total Power Supply Voltage $R_1 = 600\Omega$ , THD+N = 1%

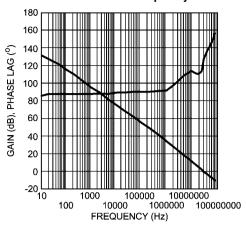



### Power Supply Current vs Total Power Supply Voltage $R_1 = 2k\Omega$




## Power Supply Current vs Total Power Supply Voltage $R_L = 10k\Omega$




#### Full Power Bandwidth vs Frequency



## Small-Signal Transient Response $A_V = 1$ , $C_L = 10pF$



#### Gain Phase vs Frequency



202151j1

## Small-Signal Transient Response $A_V = 1$ , $C_L = 100pF$



202151i8

### **Application Information**

#### **DISTORTION MEASUREMENTS**

The vanishingly low residual distortion produced by LME49860 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LME49860's low residual distortion is an input referred internal error. As shown in Figure 1, adding the  $10\Omega$  resistor connected between the amplifier's inverting and non-inverting

inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 1.

This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

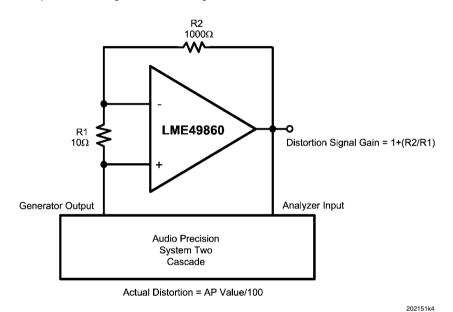
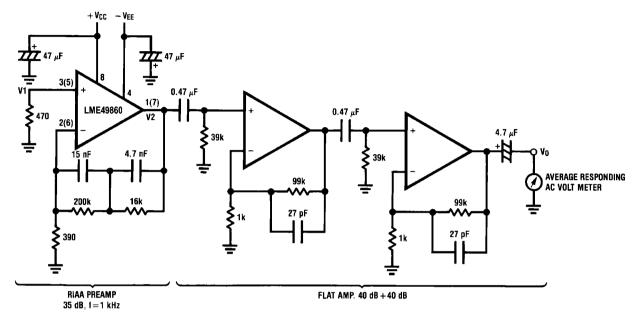
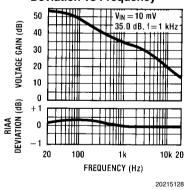



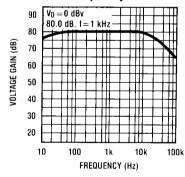

FIGURE 1. THD+N and IMD Distortion Test Circuit

The LME49860 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted

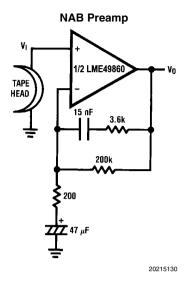



20215127

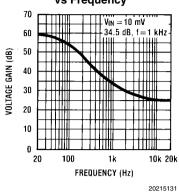

Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

Noise Measurement Circuit Total Gain: 115 dB @f = 1 kHz Input Referred Noise Voltage:  $e_n = V0/560,000$  (V)

## RIAA Preamp Voltage Gain, RIAA Deviation vs Frequency

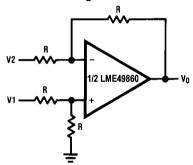



### Flat Amp Voltage Gain vs Frequency

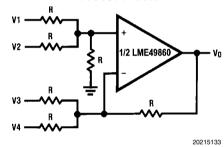



20215129

#### **TYPICAL APPLICATIONS**




## NAB Preamp Voltage Gain vs Frequency

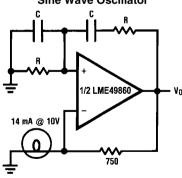



 $A_V = 34.5$  F = 1 kHz  $E_n = 0.38 \mu\text{V}$ A Weighted

#### **Balanced to Single Ended Converter**



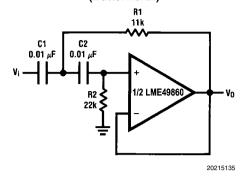
Adder/Subtracter




 $V_0 = V1 + V2 - V3 - V4$ 

V<sub>O</sub> = V1–V2

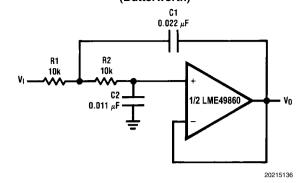
Sine Wave Oscillator


20215132



20215134

$$f_0 = \frac{1}{2\pi BC}$$


## Second Order High Pass Filter (Butterworth)

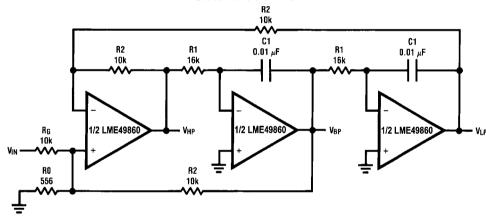


$$R1 = \frac{\sqrt{2}}{2w-C}$$

Illustration is  $f_0 = 1 \text{ kHz}$ 

### Second Order Low Pass Filter (Butterworth)

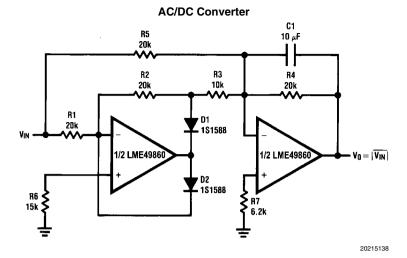



if R1 = R2 = R

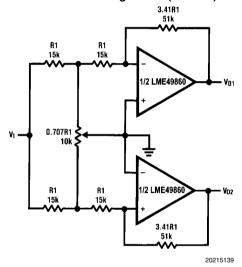
$$C1 = \frac{\sqrt{2}}{\omega \cdot R}$$

$$C2 = \frac{C1}{2}$$

Illustration is f<sub>0</sub> = 1 kHz


#### State Variable Filter




20215137

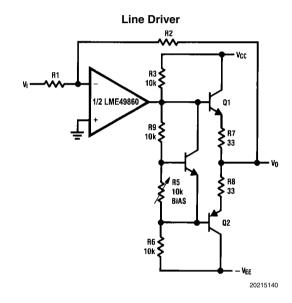

$$f_0 = \frac{1}{2\pi C 1 R 1}, Q = \frac{1}{2} \left( 1 + \frac{R2}{R0} + \frac{R2}{RG} \right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$

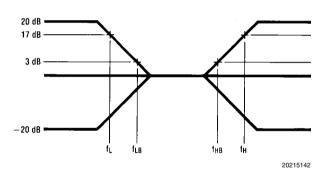
Illustration is  $f_0 = 1 \text{ kHz}$ , Q = 10,  $A_{BP} = 1$ 

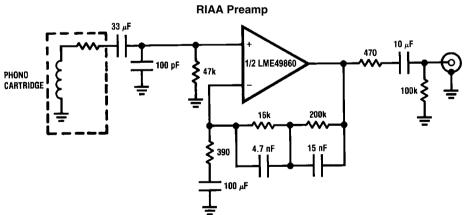


#### 2 Channel Panning Circuit (Pan Pot)






### 


20215141

$$\begin{split} f_L &= \frac{1}{2\pi R2CI}, f_{LB} = \frac{1}{2\pi R1C1} \\ f_H &= \frac{1}{2\pi R5C2}, f_{HB} = \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

Illustration is:

$$\begin{aligned} & {\rm f_{L}} = 32 \; {\rm Hz}, \, {\rm f_{LB}} = 320 \; {\rm Hz} \\ & {\rm f_{H}} = 11 \; {\rm kHz}, \, {\rm f_{HB}} = 1.1 \; {\rm kHz} \end{aligned}$$



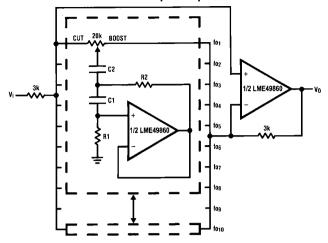


20215103

 $\begin{array}{l} A_v = 35 \text{ dB} \\ E_n = 0.33 \text{ } \mu\text{V} \\ \text{S/N} = 90 \text{ dB} \\ \text{f} = 1 \text{ kHz} \\ \text{A Weighted} \\ \text{A Weighted}, V_{\text{IN}} = 10 \text{ mV} \end{array}$ 

@f = 1 kHz

### 


20215143

If R2 = R5, R3 = R6, R4 = R7  

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

Illustration is: V0 = 101(V2 - V1)

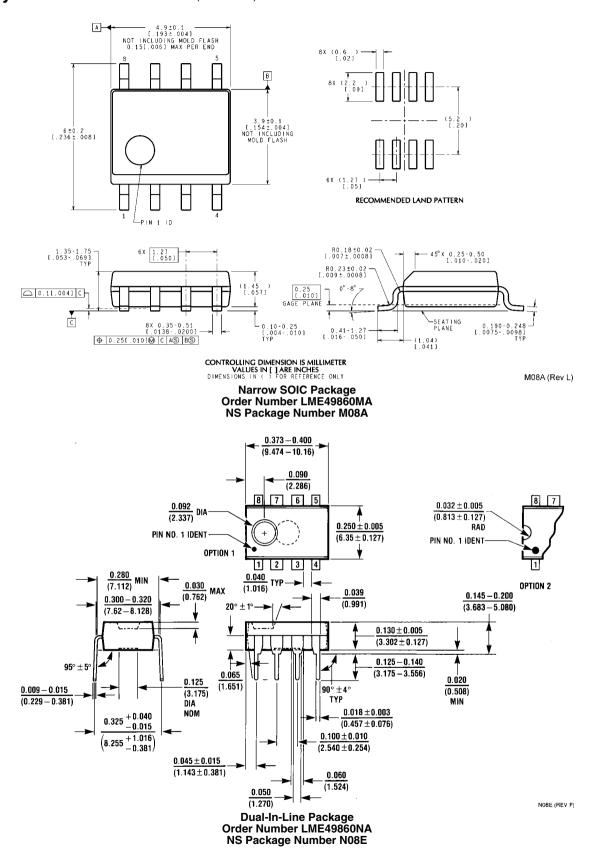
#### 10 Band Graphic Equalizer



20215144

| fo (Hz) | C <sub>1</sub> | C <sub>2</sub> | R <sub>1</sub> | R <sub>2</sub> |
|---------|----------------|----------------|----------------|----------------|
| 32      | 0.12µF         | 4.7µF          | 75kΩ           | 500Ω           |
| 64      | 0.056µF        | 3.3µF          | 68kΩ           | 510Ω           |
| 125     | 0.033µF        | 1.5µF          | 62kΩ           | 510Ω           |
| 250     | 0.015µF        | 0.82µF         | 68kΩ           | 470Ω           |
| 500     | 8200pF         | 0.39µF         | 62kΩ           | 470Ω           |
| 1k      | 3900pF         | 0.22µF         | 68kΩ           | 470Ω           |
| 2k      | 2000pF         | 0.1µF          | 68kΩ           | 470Ω           |
| 4k      | 1100pF         | 0.056µF        | 62kΩ           | 470Ω           |
| 8k      | 510pF          | 0.022µF        | 68kΩ           | 510Ω           |
| 16k     | 330pF          | 0.012µF        | 51kΩ           | 510Ω           |

Note 9: At volume of change =  $\pm 12 \text{ dB}$ 


Q = 1.7

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2–61

### **Revision History**

| Rev | Date     | Description                                               |
|-----|----------|-----------------------------------------------------------|
| 1.0 | 06/01/07 | Initial release.                                          |
| 1.1 | 06/11/07 | Added the LME49860MA and LME49860NA Top Mark Information. |

### Physical Dimensions inches (millimeters) unless otherwise noted



#### **Notes**

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560